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Phase multistability of self-modulated oscillations
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The paper examines the type of multistability that one can observe in the synchronization of two oscillators
when the systems individually display self-modulation or other types of multicrest wave forms. The investi-
gation is based on a phase reduction method and on the calculation of phase maps for vanishing and finite
coupling strengths, respectively. Various phase-locked patterns are observed. In the presence of a frequency
mismatch, the two-parameter bifurcation analysis reveals a set of synchronization regions inserted one into the
other. Numerical examples using a generator with inertial nonlinearity and a biologically motivated model of
nephron autoregulation are presented.
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[. INTRODUCTION loglomerular feedback and somewhat faster oscillations as-
sociated with the inherent dynamics of the arteriolar radius
Many processes in nature are characterized by a numbét7]. Two-mode stochastic dynamics was studied in the con-
of coexisting attractors that can be reached from differentext of rhythmic applaus¢l8]. Likewise, in various engi-
initial conditions but for a fixed set of parameters. This isneering applications, special interest is paid to a fast dynam-
observed in diverse areas of Science, inciuding ph)[ﬂ_“g7 ics Subje(.?ted to a SIOW modulation Or_tO Comple)-( _beh.aViOl‘S
Chemistry[3,4:|' and phys|0|ogy[5,6] In neuroscience, for characterized by brief bursts of OSCIllatOI'y aCt|V|ty Inter-
instance, multistability is commonly considered a mechaspPersed in quiescent periofs9].
nism for memory storage and temporal pattern recognition As indicated by the above examples, the problem of syn-
[7]. Multistability phenomena have also been examined irchronization of multimode oscillations is of significant inter-
Systems with time deiay{ﬁ] and noise-induced patter[B]_ est. Yet, Only a few studies seem to have Consiqere.d this
In the present paper, we focus phase multistabilityi.e., ~Problem. Leaving the general aspect of synchronization of
the simultaneous existence of stalsienchronousregimes ~ fast and slow motions for further investigations, in this paper
with different phase relationship®etween the oscillations. We restrict ourselves teelf-modulated oscillationthat are
This type of multistability was first observed for diffusively Widely spread in systems of different nature, leading, in its
coupled oscillators that individually follow a period- Simplest form, to quasiperiodic behavior. Due to the internal
doubling route to chaokL0—13. The possible synchronous coupling, the fast and slow oscillations will often be locked
regimes increase in number when more subharmonics of tH8 some resonant ratio. The question then arises: How does
basic frequency can be distinguished in the power spectrunine phase multistability manifest itself when systems demon-
Phase multistability can also be observed for weak chaos th&frating such resonant self-modulated behavior interact with
demonstrates an N-band structure. The hierarchy of multistsgach other? Below, we discuss some applicable methods and
bility in systems of identical interacting oscillators with illustrate their use both for a three-dimensional model of an
weak dissipative Coupiing has been studied numerica”y anélectrornc OSCIllatOI‘ and fOI’ a blOlOglcally m0t|Vated m0de|
experimentally by Astakhowet al. [10]. For two coupled ©f a nephron.
Rossler systems, Rasmussenal. [11] have found the re-
placement of some of the period-doubling bifurcations by
torus birth bifurcations leading to quasiperiodicity, frequency
locking, and the emergence of new nonsymmetric families of The description of synchronization phenomena observed
attractors. Anishchenket al. have shown 12,13 that this in interacting oscillators may be divided into two stages. The
type of multistability is structurally stable with respect to a first step is to consider the case when the coupling strength is
weak mismatch between the basic frequencies, and Postneufficiently weak so that an analytical method can be ap-
et al. [14] have described the nested structure of the phasplied. The second step is to examine the case of finite cou-
synchronized regions. pling strength and show to what extent the results of the
Natural phenomena often involve dynamics with differentweak-coupling limit can be extrapolated. Since the definition
time scales. This may be particularly significant for living of phase multistability involves the phase difference between
systems. The thalamocortical relay neurons, for instance, cahe interacting oscillators, the phase variables will be the
generate either spindle or delta oscillatidi%]. Recently, main quantities used to characterize the collective dynamics.
Neiman and Russ€]llL6] have found that the electroreceptors  First, let us consider the weak-coupling case, i.e., we as-
in paddlefish possess the property of being biperiodic. Theume that the coupling causes only small perturbations of the
functional units of the kidney, the nephrons, demonstratdimit cycles of the uncoupled oscillators. The coupled system
low-frequency oscillations arising from a delay in the tubu- may then be approximated by a phase m¢@é], where the

Il. APPROACH TO PHASE MULTISTABILITY
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phase¢ of a limit cycle oscillator is defined bg¢(V,)/dt 100 T 40 y

=1 with Voe RN being a point on the limit cycle. Applying @ sel ®
the concept ofsochronsdefined stroboscopically as a subset 50 1 ’

of initial conditions that asymptotically converge to the same h’ﬂ:{; 1 A;\‘I‘\'A*h "I‘\‘A’ 32| _

extended to some vicinity of the limit cycle. Moreover, for a 280 ]

point on the limit cycle[20], the phase description can be ; oo uvvvvh vavv\l |’V" "

sufficiently small vicinity of the limit cycle one can assume -0}

) ) — ] 24 .
that the above subset is a flat surface that is transversal to th - :
limit cycle in a given point. S100 b 20
In the presence of a small perturbati&V), the phase t ’ - ’ ’

dynamics obeys the following equati¢®0]:
FIG. 1. Self-modulated regime 1:6 in a single generator with

do inertial nonlinearity. (@) Time series andb) phase portrait o
qt "1+ Z(9)PV), (1)  =2.90328,g=0.012505, and=5x10"5).
where the sensitivity functiod( $) = grad/¢>|v=vo measures Note that for the effective coupling method one can obtain

the change of phase along the limit cycle caused by théhe phase map in terms df,. Namely, for two coupled

change ofV. Namely, we choose a poinf, on the limit identical oscillators the phase difference behavior is given by

cycle and a poinV close toV, but not on the limit cycle and [20]

then measure the difference in phases betwéeandV. In d(A¢)

the limit |V—Vy|—0, this difference, divided byV—V,|, ai

gives the sensitivity functioZ(¢).
The interaction of twadentical oscillators with phase#; Setting dt—7 and d(A¢)—(Ad, . —Ad,) for small

and ¢, can be quantified by the evolution of their phaseenoughr one finds the expression !

difference A¢p= ¢, — ¢,. In the limit of weak interaction,

averaged over a period, the phase dynamics for one of the Adry ~Ad+ 121 (A y), (4)

oscillators can be expressed[26)]

d(A¢) 1 (2n
T2 rad) =5 | TdezeP(oA9. @

=2I'3(A¢). )

to which our numerical calculations converge for vanishing
coupling.

IIl. PHASE DYNAMICS OF COUPLED OSCILLATORS
whereP(¢,A ¢)=P(Vo(#),Vo(¢p+ Ap)) describes the rate
of change of the state vectdf of one oscillator due to the
interaction with another oscillator with a phase difference To illustrate our approach we use the three-dimensional
A ¢, andZP is the phase shift along the limit cycle for the model of an electronic oscillatdgenerator with inertial non-
given perturbation. Note, that the limit cycles in both sys-linearity) that has a simple equivalent circuit implementation
tems are assumed to have similar shapes, i.e., to be topolog23,24] and a simple set of dynamical equations:
cally conjugated.

A. Model equations and vector of diffusive coupling

For mutually coupled oscillators, the entrainment mani- X=mx—zx+y—bx?,
fests itself as a mutual phase shift. This can be analyzed
purely in terms of theantisymmetricpart I' (A ¢) of the y=—X,
effective coupling functior(2) [20]. The zeroes of (A ¢)
correspond to the phase-locked synchronous states ( iz—gz+gx(x+|x|)/2. (5)

=const) and their stabilities are determined from the slope
of I',(A¢) at the respective states, i.e., a negative slopélere,m, b, andg are control parameters. With different val-
means a stable state, and vice versa. This method of effectivees of these parameters, a variety of regular and chaotic re-
coupling has been used in a number of applicationgjimes can be observgd4]. Among these, the modéb) can
[19,21,23. operate in a regime of self-modulated oscillations. This au-
When the coupling becomes strong enough to modify theonomous regime is characterized by slow and fast oscilla-
geometry of the limit cycle, the phase reduction method caory modes whose frequencies are in a 1:6 réfig. 1).
no longer be used. Direct numerical methods should then be In model systems, the coupling terms are generally con-
applied. First of all, we calculate a set of points on the limitsidered to be proportional to the differences between the cor-
cycle modified by the interaction. Over a set of initial con- responding variables. For two coupled systems of the form
ditions covering the full length of the limit cycle, we follow (5), this implies the presence of terms of the formy, (
the evolution of the initial phase shik ¢(t) to some fixed —x,), (y1—Y2), and ;—2,) in the equations for the, v,
value A ¢(t+ 7). Plotting these results together, i.A ¢(t and z variables, respectively. The simplest case involves in-
+7) VSA ¢(t), we obtain a one-dimensional phase map withteraction through only one variable. Examples range from
a discrete time step. The analysis of this map allows us to electronic circuits with a purely resistive coupling between
find the fixed points and estimate their stabilities. the component circuits over mechanical oscillatory systems
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with inertial coupling to neuron models with electrical cou- solutions. Note that their number corresponds to the number
pling. In more realistic circumstances, however, multivari-of local maxima over the period of oscillatior&ig. 1).

able coupling seems to be more appropriate. For instance, ti&ince the coupling is diffusive, the stable synchronous re-
reactance in electronic circuits or the propagation time delagimes in the coupled system are related to the coincidence of
along neuronal axons may give rise to couplings through théocal maxima of oscillations in the individual units. The sys-
velocity variable. Let us analyze the general case when thgsm s eventually stabilized in one of the stable regimes ac-
diffusive coupling is introduced in a vector fornK  cording to the considered initial conditions. The coupling has

=(Kx,Ky,K2) little influence on the phase difference of the system when

1 the oscillator is in the synchronized regime. If any phase

—Xq 5= MXg 95— 2y Xy o+ Y1 o0~ bxf o+ Ky (X2 1— X1 2), shift from this state arises, the system will gradually be at-
wi2 ' T ' ’ ' '

tracted back to synchronous state.
1 Coupling via thez variable demonstrates a completely
—Y1~ —Xg 2+ Ky(Y21— Y10, fjlffere_nt behavior. There is only one stable regime and this is
1.2 in antiphase. We suppose that this is related to the dephasing

1 effect[21,27 caused by the vector field deformation in the
o = _ vicinity of the saddle equilibrium point near the limit cycle.
wl,zzl’z 0212+ O dX ot )2 K221 210), Variation of thez variable strongly affects the distance of the

(6) perturbed trajectory from this point and, hence, is respon-
sible for its slowing down or acceleration. Moreove(t)
gperates in a different regime as compared(t andy(t),
I.e., without any modulatior{(Fig. 1). When the vector of
diffusive coupling is changed fromor y coupling towardz

wherew;=1 andw, defines the frequency mismatch. It may
be advantageous to represent the vector coupling in terms
polar coordinates:

K=K cos6f cosB, coupling, a transition between different sets of coexisting
regimes can be observed. Figurd)2shows how the multi-
K,=K sin@ cosp, stable regimes successively disappear with a smooth transi-

tion implemented by the variation @ from x to z coupling.
K,=Ksing. (7)
C. Mapping approach
This is the approach that we shall use in the following analy- . .
sis. Here K denotes the coupling strength, and the angles (% Let tus constlder :he t_)eha(\jnortof the COUp{Ed syste;étﬁ)s ith
< #<7/2 and O< 8= 7/2 define the relative weights of the or a strong interaction in order to compare the resuits wi

; ; the case of vanishingly weak coupling.
three coupling termsf and 8 can be also viewed as the : ; .
orientation angles of the coupling force in the three- As predicted by the phase reduction method, six phase-

dimensional subspace of each oscillator. Single-variable co _o:_:ked patterns foK =0.0005 are epr|C|tIy'd|st|ngU|sheq'
pling is achieved when 6=0,8=0), (6=m/2,3=0), or Fig. 3. Each state corresponds to one of six stable equilib-
(B=12). rium points in the phase ma[ﬁg. 4(a)]. The time series of
the multistable regimes are shifted with respect to each other
while the phase portraits on the;(,x,) plane indicate dif-
ferent out-of-phase regimes with respect to the symmetric
To reach the regime of self-modulated oscillations for thephase space.
system (5), we fix m=2.90328, g=0.012505, andb When the mismatch parametey is varied away from the
=0.0005. Figure 2 illustrates the effect of phase multistabil-symmetric case the synchronous regimes sequentially lose
ity through the effective coupling technique. Inspection oftheir stability. The number of equilibrium points is decreased
the figure clearly shows that the calculated antisymmetrizvia tangent bifurcations in terms of the mffgig. 4(b) with
part of I' for x andy diagnose six stable and six unstable inserf. Figure 5 represents the bifurcation diagram of the

B. Application of phase reduction method
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0o N K 0 %o 0 % K % % FIG. 4. The phase map of systeff) contains(a) six stable

equilibrium points corresponding to six synchronous regimes for
FIG. 3. Six phase-locked patterns with different phase stdjts identical systems ¢,=1.0). When a frequency mismatcho{

A$p=0.0, (b) Ap=1.65537, () Ap=1.3134r, (d) A¢ =1.001) is introducedb) only three equilibrium points remail
=0.99287, (e) A¢p=0.6710G7, and (f) A¢$=0.34257, when K is fixed at 5x 1074
=5x10"% andw,=1.0.

loop of Henle[25-28. A particular aspect of this research
possible synchronous regimes on the frequency mismatch s been to show that the transition from regular tubular
coupling-strength parameter plane. For weak interactionPressure oscillationgas observed in rats with normal blood
there are six stablé@and the same number of unstabéelu- pressurgto |rregul_ar va_rlatlons(as observed in hypertensn_/e_
tions that differ from one another by a phase shift. There is 429 can be explained in terms of parameter changes within
set of stability regions for different synchronous regimesthe framework of well-established physiological mecha-
whose structures are similar to those described in a previod¥Sms. o S
publication [14] for oscillators demonstrating the Feigen-  1he autoregulation in an individual nephron may be de-
baum route to chaos. In present case, however, the tongué§'ibed by the following modd28,29:
are not all inserted one into the other, but some of them are
shifted a little with respect to each other. With increasing ptzi
coupling, the solutions subsequently lose their stability Ciub
through period-doubling bifurcatior(glotted curvep

{Ff(Pt ,I’)— Freab_(Pt_ Pd)/RH}!

r=v,,
IV. ADJUSTMENT OF OSCILLATORY MODES
IN NEPHRON AUTOREGULATION

.1
A. Single-nephron model vr:;{Pav(Pt ;1) = Ped 1, ¥(X3,0),T]— wdv,},
Over the years significant effort has been made to develop
mathematical models that can describe the dynamical pro- i
cesses associated with the autoregulation of the functional X1=7- (Pe= Pa)— TX1
unit of the kidney, the nephron. This regulation involves the H
the so-called tubuloglomerular feedbaCkGF) mechanism
by which the diameter of the afferent blood vessel is adjusted

. 3
in response to the salt concentration in the fluid having the Xo=3 (X1~ Xa),

T
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FIG. 5. Synchronization regions for coexisting families of at-
tractors =2.903 28, g=0.012505, andb=5x10"°). Dotted
curves denote period-doubling bifurcations.
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FIG. 6. (a) Variation of the tubular pressui®, and (b) the rate

The first equation represents the pressure variations in thef changev, for the arteriolar radius in the self-modulated 1:4
proximal tubule in terms of the in and outgoing fluid flows. regime.
Here,F; is the single-nephron glomerular filtration rate, and
Ciup is the elastic compliance of the tubule. The flow into thehypertensive ratg30]. For a more detailed explanation of the
loop of Henle is determined by the differende (- P4) be-  model equations, control parameters, and the dynamics of
tween the proximal and the distal tubular pressures and bgiephrons see Reff28,29,3].
the flow resistancér,. The reabsorption in the proximal Postnovet al. [17] recently examined the interaction be-
tubuleF ., is assumed to be constant. tween the two oscillatory modes in the single nephron

The following two equations describe the dynamics assomodel. These modes can adjust their dynamics so as to attain
ciated with the flow control in the afferent arteriole. Here, different states with rational relations (1): between the pe-
represents the radius of the active part of the vessebaisl  riods. The main(1:1) synchronization regime is located near
its rate of increased denotes a characteristic time constantT=2 s, but regions of higher resonandés4, 1:5, and 1:6
describing the damping of the oscillations.is a measure of exist in the physiologically interesting range for the delay
the mass relative to the elastic compliance of the arteriolatime Te[12 s,20 $. As an illustration, Fig. 6 shows an ex-
wall, P,, denotes the average pressure in the active part adimple of 1:4 oscillations. Among the resonance regions there
the arteriole, andP. is the value of this pressure for which are regions where the modes fail to synchronize, and quasi-
the arteriole is in equilibrium with its present radius andperiodic or chaotic dynamics result. Thus, an individual
muscular activation. The expressions for, P,,, andP.q  nephron can operate in a self-modulated regime, providing a
involve a number of algebraic equations that must be solvedealistic example for our study of phase multistability. In the
along with the integration of Eq8). kidney, nephrons are often arranged in pairs with a common

The remaining equations in the single-nephron model depiece of afferent arteriole and the interaction is realized in a
scribe the delayl in the TGF regulation. This delay arises complex way. There are at least two different mechanisms of
both from the transit time through the loop of Henle andmutual coupling, the hemodynamic coupling and the so-
from the cascaded enzymatic processes between the macwalled vascular propagated coupling. The first originates
densa cells and the smooth muscle cells that control the cofrom a simple redistribution of the incoming blood flows in
tractions of the afferent arteriole. response to the contraction of one of the arterioles, and the

The feedback delay, that typically assumes a value of second is associated with electrochemical signals that propa-
12-18 s, will be considered the main bifurcation parametegate along the arteriolar walls. Thus, it is not easy to deter-
in our analysis. Another important parameter is the strengtimine the origin of the complex behavior of paired nephrons.
a of the feedback regulation. This parameter takes a valugo achieve a better understanding of this problem, let us first
about 12 for normotensive rats and increases to about 18 faest the individual nephron model with weak diffusive all-
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' ' ' ' ' ing somewhat faster oscillations with a peridg~T/4, are
P.X X, X, associated with the adjustment of the arteriolar radius.
0.25 r 1 Hence, different nephron responses to distinct types of cou-
v pling are related to the above biological processes.
f Let us make an interesting observation. With a 1:4 ratio
between the frequencies of the oscillatory modes, one can
. 0.05 N\ expect four coexisting stable regimes for the couplingrvia
~ \/ orv,, as it was observed for the electronic oscillator. How-
ever, only three such regimegero points with negative
~0.15 . | slope can be found in Fig. 7. We believe that this result is
due the fact that the oscillatory modes in the single nephron
are not actually weakly coupled. Thus, the properties of the
point A =0 are defined through the competition of oscilla-
~035 . . . . . . . tory modes that can compensate each other even when the
- —1/2 0 /2 T coupling takes place via one variable. To get an additional
Ab stable point, coupling via th®; variable should be intro-
duced. This is in a good agreement with our biological un-
FIG. 7. Antisymmetric part of the effective coupling function derstanding of the model.
for the coupled nephron®) at T=16.0 s andv=18.6. The behav-
ior of I';(A¢) reveals the synchronization properties of two
coupled 6-dimensional oscillators.

C. Biologically motivated coupling

As discussed in Ref.29], neighboring nephrons can in-
variable coupling. Using the effective coupling approach, wefluence each other’s blood supply either through vascularly
will estimate the specific properties of mod®) and then Propagated electricabr electrochemicalsignals or through
analyze the phase dynamics of the coupled nephrons in mogedirect hemodynamic coupling arising via the redistribution
realistic circumstances. of the blood flow to the coupled nephrons. While the hemo-
dynamic coupling depends mainly on the flow resistances in
the arteriolar network, the vascularly propagated coupling is
associated with a characteristic propagation length of the or-

Suppose that two models of the fori®) are coupled via der ofl =200 um. The result is that, only nephrons situated
the vector diffusive couplingsee mode(6)]. Figure 7 illus-  close to one another can interact via the vascularly propa-
trates the antisymmetric parts, of the effective coupling gated couplingd32,33. Nephrons situated further apart but
function calculated separately for the six cases of onesharing a common piece of interlobular artery may interact
variable coupling. For the variabléy, X;, X5, andX; the  via the hemodynamic coupling. In our mathematical model
plots of I'; almost coincide and possess a zero point with[29], the two interaction mechanisms are included via non-
negative slope ah ¢=0. This means that a single in-phase linear functions for the hemodynamic coupling with a
synchronous regime can be found when two nephron modelstrengthe and for the vascularly propagated coupling with a
are diffusively coupled through these variables. It is alsostrengthy.
clearly seen that the synchronous antiphase regime is un- |n reality, we expect both mechanisms to be present si-
stable @ ¢=). Generally, the observed behavior is very multaneously and to compete for dominance. Depending on
natural and expected for a wide class of classical oscillatorghe precise structure of the arteriolar network this may cause
(such as Van der Pol oscillatgrdhase multistability can not one mechanism to be the stronger in certain parts of the
be detected. kidney and the other mechanism to dominate in other parts.

However, a coupling via the or v, variables reveals a Pure vascularly propagated or pure hemodynamic coupling
more complex behavior. ThE, curve forr has three stable are assumed to cause in-phase and antiphase entrainment,
and three unstable equilibrium points. Note that the in-phaseespectively. But their combination give rise to a set of co-
regimeA ¢=0 is unstable. Similar behavior is observed for existing regimes whose origin and evolution is in a good
v, , but in this case the in-phase regime is related to a “neuagreement with findings for diffusively coupled self-
tral” equilibrium point, d(Fa)/d(A¢)HO|A¢HO. modulated oscillators as described in Sec. Ill.

Thus, application of the phase reduction method to the The coupling between nephrons leads to a set of coexist-
relatively high-dimensional nephron model allows us to di-ing self-sustained oscillations that are characterized by the
agnose a number of qualitatively different responses of thiglifferentphase relationgor the fast and slow motions. These
oscillator to varying coupling components. This is in goodoscillations coexist at the same range of parameters but for
agreement with both experimental data and simulation regifferent initial conditions. Since the single nephron operates
sults. It is known that thé;, X{, X5, X3, andv, variables in the 1:4 self-modulated regime, four phase shifted solu-
are involved in the tubuloglomerular feedback loop that istions may coexist in the coupled systéFig. 8).
responsible for low-frequency oscillations with a peridgl Figure 9 shows a segment of the bifurcation diagram for
=2.2T (as before,T denotes the delay in the TGF regula- synchronous solutions on the parameter mismatch vs
tion). On the other hand, theandv, variables, demonstrat- hemodynamic-coupling parameter plane. Here, the mismatch

B. Weak diffusive coupling
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parameter is taken to be the ratio of the delay times for the (a) r
two nephrons. The strength of the vasculary propagated in- i
teraction is fixed aty=0.004. In-phase oscillations are stable L . i
when both interacting systems are nearly identic@l ( -
~T,) and the hemodynamic coupling is weak enough ( LI T2
<0.0115). However, due to the self-modulated nature of the < w3l T
oscillations in the individual nephron, there are also two out- - | &1
of-phase stable synchronous regimé&3,; (and O,). Their or
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FIG. 9. Synchronization regions for coexisting families of at-
tractors @=18.595, T,=16.0 s, y=0.004).| denotes the stable
in-phase solutionA the antiphase solution, arf@, andO, are two

0,

FIG. 10. Phase map demonstrates four stable equilibrium

points for identical systemsT{=T,=16.0 s) and(b) two stable

out-of-phase solutions. PD denotes regimes with period-doubled s®olutions when a mismatch is introduced;E15.9985 s, T,

lutions.
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existence follows directly from the above results on weak For coupled identical oscillators one can expeatoex-
diffusive coupling viav, . isting synchronous solutions that differ from one another by
When e increases, the antiphase regiielso becomes phase shifts. The corresponding synchronization region con-
stable due to the effect of the hemodynamic coupling. Withirsists of a set of Arnol'd tongues embedded one into the other
some interval ok, there are four stable coexisting solutions: or shifted with respect to each other. The evolution of mul-
in-phasel, antiphaseA, and two out-of-phase regimé3; tistable states depends significantly on the vector of diffusive
andO,. The phase map foy=0.004,T;=T,=16.0 s, and  coupling, i.e., on the relation of coupling strength for differ-
£=0.010930 is given in Fig. 18). Eight fixed points can be ent equations. Hence, one can use the presence of particular
detected, four of them are stable and correspond to the abogstes of synchronization in experimental results as a signa-
discussed synchronous regimes. _ ture of the interaction mechanism. This is of significant in-
When a mismatchl'; # T, is introduced, these regimes ores; in biological and physiological studies where one may

sequentially lose their stability. In accordance with the phascﬁot always know the coupling mechanisms from other analy-
map, the in-phase or antiphase regimes disappear through,

: . UINRs
tag:gte?érzlgij;ca}goni.vﬁg ?:aFerleJEBV)Vh\?\;iltr? r}gctrve\lgs?;ablriifsli(ed Our results on phase multistability of self-modulated re-
Pnatch, the01’ anngz cyclesgailso Ibses their stabiligily via a gimes_ have been tested for a h_igh—dimensignal model of in-
tangent bifurcatior(entering the nonsynchronous regiar teractlng nephroqs. T.he analysis reveals d|ffe'rent resSponses
via a period doubling at the border of tRe zone in Fig. 9. depending on which time scaléast or slow the interaction

Thus. we have observed that even under the conditions dlflfluences. We have also found that phase multistability takes
a complex two-channel coupling, the interacting oscillatiorsP'ac€ in a realistic model of two-channel coupled nephrons
in the self-modulated regime can preserve the main featuredd strongly depends on the relations between the strength of

with respect to phase multistability. Namely, for the 1:4 re-the two interaction mechanisms. .
gime of the individual nephron there are four synchronous We believe that the multistability analysis of phase-locked

regimes with different phase shifts in the 1:1 internephrorPatterns in systems with fast dynamics subjected slow modu-
synchronization region. lation can provide a better understanding of many regulation
and adaptation processes in nature.

V. SUMMARY
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