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Phase multistability of self-modulated oscillations
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The paper examines the type of multistability that one can observe in the synchronization of two oscillators
when the systems individually display self-modulation or other types of multicrest wave forms. The investi-
gation is based on a phase reduction method and on the calculation of phase maps for vanishing and finite
coupling strengths, respectively. Various phase-locked patterns are observed. In the presence of a frequency
mismatch, the two-parameter bifurcation analysis reveals a set of synchronization regions inserted one into the
other. Numerical examples using a generator with inertial nonlinearity and a biologically motivated model of
nephron autoregulation are presented.
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I. INTRODUCTION

Many processes in nature are characterized by a num
of coexisting attractors that can be reached from differ
initial conditions but for a fixed set of parameters. This
observed in diverse areas of science, including physics@1,2#,
chemistry@3,4#, and physiology@5,6#. In neuroscience, for
instance, multistability is commonly considered a mec
nism for memory storage and temporal pattern recogni
@7#. Multistability phenomena have also been examined
systems with time delays@8# and noise-induced patterns@9#.
In the present paper, we focus onphase multistability, i.e.,
the simultaneous existence of stablesynchronousregimes
with different phase relationshipsbetween the oscillations
This type of multistability was first observed for diffusive
coupled oscillators that individually follow a period
doubling route to chaos@10–13#. The possible synchronou
regimes increase in number when more subharmonics o
basic frequency can be distinguished in the power spectr
Phase multistability can also be observed for weak chaos
demonstrates an N-band structure. The hierarchy of multi
bility in systems of identical interacting oscillators wit
weak dissipative coupling has been studied numerically
experimentally by Astakhovet al. @10#. For two coupled
Rössler systems, Rasmussenet al. @11# have found the re-
placement of some of the period-doubling bifurcations
torus birth bifurcations leading to quasiperiodicity, frequen
locking, and the emergence of new nonsymmetric families
attractors. Anishchenkoet al. have shown@12,13# that this
type of multistability is structurally stable with respect to
weak mismatch between the basic frequencies, and Pos
et al. @14# have described the nested structure of the ph
synchronized regions.

Natural phenomena often involve dynamics with differe
time scales. This may be particularly significant for livin
systems. The thalamocortical relay neurons, for instance,
generate either spindle or delta oscillations@15#. Recently,
Neiman and Russell@16# have found that the electrorecepto
in paddlefish possess the property of being biperiodic. T
functional units of the kidney, the nephrons, demonstr
low-frequency oscillations arising from a delay in the tub
1063-651X/2002/66~3!/036224~9!/$20.00 66 0362
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loglomerular feedback and somewhat faster oscillations
sociated with the inherent dynamics of the arteriolar rad
@17#. Two-mode stochastic dynamics was studied in the c
text of rhythmic applause@18#. Likewise, in various engi-
neering applications, special interest is paid to a fast dyn
ics subjected to a slow modulation or to complex behavi
characterized by brief bursts of oscillatory activity inte
spersed in quiescent periods@19#.

As indicated by the above examples, the problem of s
chronization of multimode oscillations is of significant inte
est. Yet, only a few studies seem to have considered
problem. Leaving the general aspect of synchronization
fast and slow motions for further investigations, in this pap
we restrict ourselves toself-modulated oscillationsthat are
widely spread in systems of different nature, leading, in
simplest form, to quasiperiodic behavior. Due to the inter
coupling, the fast and slow oscillations will often be locke
in some resonant ratio. The question then arises: How d
the phase multistability manifest itself when systems dem
strating such resonant self-modulated behavior interact w
each other? Below, we discuss some applicable methods
illustrate their use both for a three-dimensional model of
electronic oscillator and for a biologically motivated mod
of a nephron.

II. APPROACH TO PHASE MULTISTABILITY

The description of synchronization phenomena obser
in interacting oscillators may be divided into two stages. T
first step is to consider the case when the coupling streng
sufficiently weak so that an analytical method can be
plied. The second step is to examine the case of finite c
pling strength and show to what extent the results of
weak-coupling limit can be extrapolated. Since the definit
of phase multistability involves the phase difference betwe
the interacting oscillators, the phase variables will be
main quantities used to characterize the collective dynam

First, let us consider the weak-coupling case, i.e., we
sume that the coupling causes only small perturbations of
limit cycles of the uncoupled oscillators. The coupled syst
may then be approximated by a phase model@20#, where the
©2002 The American Physical Society24-1
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phasef of a limit cycle oscillator is defined bydf(V0)/dt
51 with V0PRN being a point on the limit cycle. Applying
the concept ofisochronsdefined stroboscopically as a subs
of initial conditions that asymptotically converge to the sa
point on the limit cycle@20#, the phase description can b
extended to some vicinity of the limit cycle. Moreover, for
sufficiently small vicinity of the limit cycle one can assum
that the above subset is a flat surface that is transversal t
limit cycle in a given point.

In the presence of a small perturbationP(V), the phase
dynamics obeys the following equation@20#:

df

dt
511Z~f!P~V!, ~1!

where the sensitivity functionZ(f)5gradVfuV5V0
measures

the change of phase along the limit cycle caused by
change ofV. Namely, we choose a pointV0 on the limit
cycle and a pointV close toV0 but not on the limit cycle and
then measure the difference in phases betweenV0 andV. In
the limit uV2V0u→0, this difference, divided byuV2V0u,
gives the sensitivity functionZ(f).

The interaction of twoidenticaloscillators with phasesf1
and f2 can be quantified by the evolution of their pha
differenceDf5f12f2. In the limit of weak interaction,
averaged over a period, the phase dynamics for one of
oscillators can be expressed as@20#

d~Df!

dt
5G~Df!5

1

2pE0

2p

dfZ~f!P~f,Df!, ~2!

whereP(f,Df)5P„V0(f),V0(f1Df)… describes the rate
of change of the state vectorV of one oscillator due to the
interaction with another oscillator with a phase differen
Df, andZP is the phase shift along the limit cycle for th
given perturbation. Note, that the limit cycles in both sy
tems are assumed to have similar shapes, i.e., to be topo
cally conjugated.

For mutually coupled oscillators, the entrainment ma
fests itself as a mutual phase shift. This can be analy
purely in terms of theantisymmetricpart Ga(Df) of the
effective coupling function~2! @20#. The zeroes ofGa(Df)
correspond to the phase-locked synchronous statesDf
5const) and their stabilities are determined from the slo
of Ga(Df) at the respective states, i.e., a negative sl
means a stable state, and vice versa. This method of effe
coupling has been used in a number of applicatio
@19,21,22#.

When the coupling becomes strong enough to modify
geometry of the limit cycle, the phase reduction method
no longer be used. Direct numerical methods should then
applied. First of all, we calculate a set of points on the lim
cycle modified by the interaction. Over a set of initial co
ditions covering the full length of the limit cycle, we follow
the evolution of the initial phase shiftDf(t) to some fixed
value Df(t1t). Plotting these results together, i.e.,Df(t
1t) vs Df(t), we obtain a one-dimensional phase map w
a discrete time stept. The analysis of this map allows us t
find the fixed points and estimate their stabilities.
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Note that for the effective coupling method one can obt
the phase map in terms ofGa . Namely, for two coupled
identical oscillators the phase difference behavior is given
@20#

d~Df!

dt
52Ga~Df!. ~3!

Setting dt→t and d(Df)→(Df t1t2Df t) for small
enought one finds the expression

Df t1t'Df t1t2Ga~Df t!, ~4!

to which our numerical calculations converge for vanishi
coupling.

III. PHASE DYNAMICS OF COUPLED OSCILLATORS

A. Model equations and vector of diffusive coupling

To illustrate our approach we use the three-dimensio
model of an electronic oscillator~generator with inertial non-
linearity! that has a simple equivalent circuit implementati
@23,24# and a simple set of dynamical equations:

ẋ5mx2zx1y2bx3,

ẏ52x,

ż52gz1gx~x1uxu!/2. ~5!

Here,m, b, andg are control parameters. With different va
ues of these parameters, a variety of regular and chaotic
gimes can be observed@24#. Among these, the model~5! can
operate in a regime of self-modulated oscillations. This
tonomous regime is characterized by slow and fast osc
tory modes whose frequencies are in a 1:6 ratio~Fig. 1!.

In model systems, the coupling terms are generally c
sidered to be proportional to the differences between the
responding variables. For two coupled systems of the fo
~5!, this implies the presence of terms of the form (x1
2x2), (y12y2), and (z12z2) in the equations for thex, y,
andz variables, respectively. The simplest case involves
teraction through only one variable. Examples range fr
electronic circuits with a purely resistive coupling betwe
the component circuits over mechanical oscillatory syste

FIG. 1. Self-modulated regime 1:6 in a single generator w
inertial nonlinearity. ~a! Time series and~b! phase portrait (m
52.903 28,g50.012 505, andb5531025!.
4-2
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FIG. 2. Phase analysis for the self-modulat
regime of a generator with inertial nonlinearity
~a! Antisymmetric part of effective coupling
function; ~b! evolution of location and stability of
coexisting regimes when the coupling vector
gradually changed fromKx to Kz . Black circles
denote stable solutions.
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with inertial coupling to neuron models with electrical co
pling. In more realistic circumstances, however, multiva
able coupling seems to be more appropriate. For instance
reactance in electronic circuits or the propagation time de
along neuronal axons may give rise to couplings through
velocity variable. Let us analyze the general case when
diffusive coupling is introduced in a vector formK
5(Kx ,Ky ,Kz)

1

v1,2
ẋ1,25mx1,22z1,2x1,21y1,22bx1,2

3 1Kx~x2,12x1,2!,

1

v1,2
ẏ1,252x1,21Ky~y2,12y1,2!,

1

v1,2
ż1,252gz1,21gx1,2~x1,21ux1,2u!/21Kz~z2,12z1,2!,

~6!

wherev151 andv2 defines the frequency mismatch. It ma
be advantageous to represent the vector coupling in term
polar coordinates:

Kx5K cosu cosb,

Ky5K sinu cosb,

Kz5K sinb. ~7!

This is the approach that we shall use in the following ana
sis. Here,K denotes the coupling strength, and the angle
<u<p/2 and 0<b<p/2 define the relative weights of th
three coupling terms.u and b can be also viewed as th
orientation angles of the coupling force in the thre
dimensional subspace of each oscillator. Single-variable c
pling is achieved when (u50,b50), (u5p/2,b50), or
(b5p/2).

B. Application of phase reduction method

To reach the regime of self-modulated oscillations for
system ~5!, we fix m52.903 28, g50.012 505, andb
50.0005. Figure 2 illustrates the effect of phase multista
ity through the effective coupling technique. Inspection
the figure clearly shows that the calculated antisymme
part of G for x and y diagnose six stable and six unstab
03622
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solutions. Note that their number corresponds to the num
of local maxima over the period of oscillations~Fig. 1!.
Since the coupling is diffusive, the stable synchronous
gimes in the coupled system are related to the coincidenc
local maxima of oscillations in the individual units. The sy
tem is eventually stabilized in one of the stable regimes
cording to the considered initial conditions. The coupling h
little influence on the phase difference of the system wh
the oscillator is in the synchronized regime. If any pha
shift from this state arises, the system will gradually be
tracted back to synchronous state.

Coupling via thez variable demonstrates a complete
different behavior. There is only one stable regime and thi
in antiphase. We suppose that this is related to the depha
effect @21,22# caused by the vector field deformation in th
vicinity of the saddle equilibrium point near the limit cycle
Variation of thez variable strongly affects the distance of th
perturbed trajectory from this point and, hence, is resp
sible for its slowing down or acceleration. Moreover,z(t)
operates in a different regime as compared tox(t) andy(t),
i.e., without any modulation~Fig. 1!. When the vector of
diffusive coupling is changed fromx or y coupling towardz
coupling, a transition between different sets of coexist
regimes can be observed. Figure 2~b! shows how the multi-
stable regimes successively disappear with a smooth tra
tion implemented by the variation ofb from x to z coupling.

C. Mapping approach

Let us consider the behavior of the coupled systems~6!
for a strong interaction in order to compare the results w
the case of vanishingly weak coupling.

As predicted by the phase reduction method, six pha
locked patterns forK50.0005 are explicitly distinguished
~Fig. 3!. Each state corresponds to one of six stable equi
rium points in the phase map@Fig. 4~a!#. The time series of
the multistable regimes are shifted with respect to each o
while the phase portraits on the (x1 ,x2) plane indicate dif-
ferent out-of-phase regimes with respect to the symme
phase space.

When the mismatch parameterv2 is varied away from the
symmetric case the synchronous regimes sequentially
their stability. The number of equilibrium points is decreas
via tangent bifurcations in terms of the map@Fig. 4~b! with
insert#. Figure 5 represents the bifurcation diagram of t
4-3
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possible synchronous regimes on the frequency mismatc
coupling-strength parameter plane. For weak interact
there are six stable~and the same number of unstable! solu-
tions that differ from one another by a phase shift. There
set of stability regions for different synchronous regim
whose structures are similar to those described in a prev
publication @14# for oscillators demonstrating the Feige
baum route to chaos. In present case, however, the ton
are not all inserted one into the other, but some of them
shifted a little with respect to each other. With increasi
coupling, the solutions subsequently lose their stabi
through period-doubling bifurcations~dotted curves!.

IV. ADJUSTMENT OF OSCILLATORY MODES
IN NEPHRON AUTOREGULATION

A. Single-nephron model

Over the years significant effort has been made to deve
mathematical models that can describe the dynamical
cesses associated with the autoregulation of the functi
unit of the kidney, the nephron. This regulation involves t
the so-called tubuloglomerular feedback~TGF! mechanism
by which the diameter of the afferent blood vessel is adjus
in response to the salt concentration in the fluid having

FIG. 3. Six phase-locked patterns with different phase shifts~a!
Df50.0, ~b! Df51.6553p, ~c! Df51.3134p, ~d! Df
50.9928p, ~e! Df50.6710p, and ~f! Df50.3425p, when K
5531024 andv251.0.
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loop of Henle@25–28#. A particular aspect of this researc
has been to show that the transition from regular tubu
pressure oscillations~as observed in rats with normal bloo
pressure! to irregular variations~as observed in hypertensiv
rats! can be explained in terms of parameter changes wi
the framework of well-established physiological mech
nisms.

The autoregulation in an individual nephron may be d
scribed by the following model@28,29#:

Ṗt5
1

Ctub
$F f~Pt ,r !2Freab2~Pt2Pd!/RH%,

ṙ 5v r ,

v̇ r5
1

v
$Pav~Pt ,r !2Peq@r ,C~X3 ,a!,T#2vdv r%,

Ẋ15
1

RH
~Pt2Pd!2

3

T
X1 ,

Ẋ25
3

T
~X12X2!,

FIG. 4. The phase map of system~6! contains~a! six stable
equilibrium points corresponding to six synchronous regimes
identical systems (v251.0). When a frequency mismatch (v2

51.001) is introduced~b! only three equilibrium points remain.K
is fixed at 531024.
4-4
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Ẋ35
3

T
~X22X3!. ~8!

The first equation represents the pressure variations in
proximal tubule in terms of the in and outgoing fluid flow
Here,F f is the single-nephron glomerular filtration rate, a
Ctub is the elastic compliance of the tubule. The flow into t
loop of Henle is determined by the difference (Pt2Pd) be-
tween the proximal and the distal tubular pressures and
the flow resistanceRH . The reabsorption in the proxima
tubuleFreab is assumed to be constant.

The following two equations describe the dynamics as
ciated with the flow control in the afferent arteriole. Herer
represents the radius of the active part of the vessel andv r is
its rate of increase.d denotes a characteristic time consta
describing the damping of the oscillations.v is a measure of
the mass relative to the elastic compliance of the arteri
wall, Pav denotes the average pressure in the active par
the arteriole, andPeq is the value of this pressure for whic
the arteriole is in equilibrium with its present radius a
muscular activation. The expressions forF f , Pav , andPeq
involve a number of algebraic equations that must be sol
along with the integration of Eq.~8!.

The remaining equations in the single-nephron model
scribe the delayT in the TGF regulation. This delay arise
both from the transit time through the loop of Henle a
from the cascaded enzymatic processes between the m
densa cells and the smooth muscle cells that control the
tractions of the afferent arteriole.

The feedback delayT, that typically assumes a value o
12–18 s, will be considered the main bifurcation parame
in our analysis. Another important parameter is the stren
a of the feedback regulation. This parameter takes a va
about 12 for normotensive rats and increases to about 18

FIG. 5. Synchronization regions for coexisting families of a
tractors (m52.903 28, g50.012 505, andb5531025). Dotted
curves denote period-doubling bifurcations.
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hypertensive rats@30#. For a more detailed explanation of th
model equations, control parameters, and the dynamic
nephrons see Refs.@28,29,31#.

Postnovet al. @17# recently examined the interaction be
tween the two oscillatory modes in the single nephr
model. These modes can adjust their dynamics so as to a
different states with rational relations (1:n) between the pe-
riods. The main~1:1! synchronization regime is located ne
T52 s, but regions of higher resonances~1:4, 1:5, and 1:6!
exist in the physiologically interesting range for the del
time TP@12 s,20 s#. As an illustration, Fig. 6 shows an ex
ample of 1:4 oscillations. Among the resonance regions th
are regions where the modes fail to synchronize, and qu
periodic or chaotic dynamics result. Thus, an individu
nephron can operate in a self-modulated regime, providin
realistic example for our study of phase multistability. In t
kidney, nephrons are often arranged in pairs with a comm
piece of afferent arteriole and the interaction is realized i
complex way. There are at least two different mechanism
mutual coupling, the hemodynamic coupling and the
called vascular propagated coupling. The first origina
from a simple redistribution of the incoming blood flows
response to the contraction of one of the arterioles, and
second is associated with electrochemical signals that pr
gate along the arteriolar walls. Thus, it is not easy to de
mine the origin of the complex behavior of paired nephro
To achieve a better understanding of this problem, let us
test the individual nephron model with weak diffusive a

FIG. 6. ~a! Variation of the tubular pressurePt and ~b! the rate
of changev r for the arteriolar radius in the self-modulated 1:
regime.
4-5
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O. V. SOSNOVTSEVAet al. PHYSICAL REVIEW E 66, 036224 ~2002!
variable coupling. Using the effective coupling approach,
will estimate the specific properties of model~8! and then
analyze the phase dynamics of the coupled nephrons in m
realistic circumstances.

B. Weak diffusive coupling

Suppose that two models of the form~8! are coupled via
the vector diffusive coupling@see model~6!#. Figure 7 illus-
trates the antisymmetric partsGa of the effective coupling
function calculated separately for the six cases of o
variable coupling. For the variablesPt , X1 , X2, andX3 the
plots of Ga almost coincide and possess a zero point w
negative slope atDf50. This means that a single in-pha
synchronous regime can be found when two nephron mo
are diffusively coupled through these variables. It is a
clearly seen that the synchronous antiphase regime is
stable (Df5p). Generally, the observed behavior is ve
natural and expected for a wide class of classical oscilla
~such as Van der Pol oscillators!. Phase multistability can no
be detected.

However, a coupling via ther or v r variables reveals a
more complex behavior. TheGa curve for r has three stable
and three unstable equilibrium points. Note that the in-ph
regimeDf50 is unstable. Similar behavior is observed f
v r , but in this case the in-phase regime is related to a ‘‘n
tral’’ equilibrium point, d(Ga)/d(Df)→0uDf→0.

Thus, application of the phase reduction method to
relatively high-dimensional nephron model allows us to
agnose a number of qualitatively different responses of
oscillator to varying coupling components. This is in go
agreement with both experimental data and simulation
sults. It is known that thePt , X1 , X2 , X3, andv r variables
are involved in the tubuloglomerular feedback loop that
responsible for low-frequency oscillations with a periodTh
52.2T ~as before,T denotes the delay in the TGF regul
tion!. On the other hand, ther andv r variables, demonstrat

FIG. 7. Antisymmetric part of the effective coupling functio
for the coupled nephrons~8! at T516.0 s anda518.6. The behav-
ior of Ga(Df) reveals the synchronization properties of tw
coupled 6-dimensional oscillators.
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ing somewhat faster oscillations with a periodTv'Th/4, are
associated with the adjustment of the arteriolar radi
Hence, different nephron responses to distinct types of c
pling are related to the above biological processes.

Let us make an interesting observation. With a 1:4 ra
between the frequencies of the oscillatory modes, one
expect four coexisting stable regimes for the coupling vir
or v r , as it was observed for the electronic oscillator. Ho
ever, only three such regimes~zero points with negative
slope! can be found in Fig. 7. We believe that this result
due the fact that the oscillatory modes in the single neph
are not actually weakly coupled. Thus, the properties of
point Df50 are defined through the competition of oscill
tory modes that can compensate each other even when
coupling takes place via one variable. To get an additio
stable point, coupling via thePt variable should be intro-
duced. This is in a good agreement with our biological u
derstanding of the model.

C. Biologically motivated coupling

As discussed in Ref.@29#, neighboring nephrons can in
fluence each other’s blood supply either through vascula
propagated electrical~or electrochemical! signals or through
a direct hemodynamic coupling arising via the redistributi
of the blood flow to the coupled nephrons. While the hem
dynamic coupling depends mainly on the flow resistance
the arteriolar network, the vascularly propagated coupling
associated with a characteristic propagation length of the
der of l 5200 mm. The result is that, only nephrons situat
close to one another can interact via the vascularly pro
gated coupling@32,33#. Nephrons situated further apart b
sharing a common piece of interlobular artery may inter
via the hemodynamic coupling. In our mathematical mo
@29#, the two interaction mechanisms are included via no
linear functions for the hemodynamic coupling with
strength« and for the vascularly propagated coupling with
strengthg.

In reality, we expect both mechanisms to be present
multaneously and to compete for dominance. Depending
the precise structure of the arteriolar network this may ca
one mechanism to be the stronger in certain parts of
kidney and the other mechanism to dominate in other pa
Pure vascularly propagated or pure hemodynamic coup
are assumed to cause in-phase and antiphase entrain
respectively. But their combination give rise to a set of c
existing regimes whose origin and evolution is in a go
agreement with findings for diffusively coupled sel
modulated oscillators as described in Sec. III.

The coupling between nephrons leads to a set of coex
ing self-sustained oscillations that are characterized by
differentphase relationsfor the fast and slow motions. Thes
oscillations coexist at the same range of parameters bu
different initial conditions. Since the single nephron opera
in the 1:4 self-modulated regime, four phase shifted so
tions may coexist in the coupled system~Fig. 8!.

Figure 9 shows a segment of the bifurcation diagram
synchronous solutions on the parameter mismatch
hemodynamic-coupling parameter plane. Here, the mism
4-6
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FIG. 8. Phase portraits for dif-
ferent regimes. In-phase (Df
50.0) and antiphase (Df
51.5711p) solutions are labeledI
and A, respectively. Two out-of-
phase solutions with Df
51.7526p andDf50.9272p are
indicated as O1 and O2. The
phase space trajectories are pr
jected onto the planes spanned b
the rates of change for the two a
teriolar radii.
th
i

le

(
th
u

t-

s

parameter is taken to be the ratio of the delay times for
two nephrons. The strength of the vasculary propagated
teraction is fixed atg50.004. In-phase oscillations are stab
when both interacting systems are nearly identical (T1
'T2) and the hemodynamic coupling is weak enough«
,0.0115). However, due to the self-modulated nature of
oscillations in the individual nephron, there are also two o
of-phase stable synchronous regimes (O1 and O2). Their

FIG. 9. Synchronization regions for coexisting families of a
tractors (a518.595, T2516.0 s, g50.004). I denotes the stable
in-phase solution,A the antiphase solution, andO1 andO2 are two
out-of-phase solutions. PD denotes regimes with period-doubled
lutions.
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FIG. 10. Phase map demonstrates~a! four stable equilibrium
points for identical systems (T15T2516.0 s) and~b! two stable
solutions when a mismatch is introduced (T1515.9985 s, T2

516.0 s). (a518.595,«50.01093, andg50.004.!
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existence follows directly from the above results on we
diffusive coupling viav r .

When « increases, the antiphase regimeA also becomes
stable due to the effect of the hemodynamic coupling. Wit
some interval of«, there are four stable coexisting solution
in-phaseI, antiphaseA, and two out-of-phase regimesO1
andO2. The phase map forg50.004,T15T2516.0 s, and
«50.010 930 is given in Fig. 10~a!. Eight fixed points can be
detected, four of them are stable and correspond to the a
discussed synchronous regimes.

When a mismatchT15” T2 is introduced, these regime
sequentially lose their stability. In accordance with the ph
map, the in-phase or antiphase regimes disappear throu
tangent bifurcation. An example, when only two stable fix
point remain, is given in Fig. 10~b!. With increasing mis-
match, theO1 andO2 cycles also loses their stability via
tangent bifurcation~entering the nonsynchronous region! or
via a period doubling at the border of thePD zone in Fig. 9.

Thus, we have observed that even under the condition
a complex two-channel coupling, the interacting oscillatio
in the self-modulated regime can preserve the main feat
with respect to phase multistability. Namely, for the 1:4
gime of the individual nephron there are four synchrono
regimes with different phase shifts in the 1:1 interneph
synchronization region.

V. SUMMARY

The results of our numerical simulations can be summ
rized as follows. A system of two diffusively coupled osc
lators operating in the 1:n regime of self-modulation (n be-
ing an integer! reveals the same aspects of pha
multistability as previously discussed for systems w
period-doubling cascades@14#.
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For coupled identical oscillators one can expectn coex-
isting synchronous solutions that differ from one another
phase shifts. The corresponding synchronization region c
sists of a set of Arnol’d tongues embedded one into the o
or shifted with respect to each other. The evolution of m
tistable states depends significantly on the vector of diffus
coupling, i.e., on the relation of coupling strength for diffe
ent equations. Hence, one can use the presence of parti
states of synchronization in experimental results as a sig
ture of the interaction mechanism. This is of significant
terest in biological and physiological studies where one m
not always know the coupling mechanisms from other ana
ses.

Our results on phase multistability of self-modulated
gimes have been tested for a high-dimensional model of
teracting nephrons. The analysis reveals different respo
depending on which time scale~fast or slow! the interaction
influences. We have also found that phase multistability ta
place in a realistic model of two-channel coupled nephro
and strongly depends on the relations between the streng
the two interaction mechanisms.

We believe that the multistability analysis of phase-lock
patterns in systems with fast dynamics subjected slow mo
lation can provide a better understanding of many regula
and adaptation processes in nature.
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